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ABSTRACT 

We give a complete solution to the following question: when does a superstable 
theory have a model of power K omitting a partial type q? In particular, for fixed 
q, if there is such a model of power NI then there is one of power 2so; and if 
there is a model omitting q of power "~, then there are arbitrarily large ones. For 
stable theories, a model of power N~+~ omitting q implies one of power 2 so, and 
this is sharp. Several improvements and some negative results are listed in the 
introduction. 

1. Introduction 

Questions o f  omitt ing types test our  ability to find symmetries in models and to 

build models preserving given symmetries.  As the existence o f  many  symmetries 

and the ability to construct  models are two of  the main  features o f  stability, it is 

not  surprising that  there is a connect ion.  The simplest omitt ing types question is 

the H a n f  number:  given a class o f  countable theories, its H a n f  number  is the least 

such that  if a theory in the class has arbitrarily large models below K omit t ing a 

given countable  set o f  incomplete types, then it has arbitrarily large such models.  

Here is a table demonstrat ing the increasing power o f  the structure theories for the 

various stability classes: 

Class of theories Hanf number 

stable ~ 
superstable ~++ 
superstable unidimensional "~,~ [Sh 1 ] 
superstable, NDOP, NOTOP "~++ 
~-stable R2 [Mo2l 
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The lower bound for stable theories is of  course the general bound from [Mol]; 

we give examples showing one cannot do better. For superstable theories, the Hanf  

number was annoyingly open. It turns out that this was an accident, as the tech- 

niques of  [Shl] suffice with only slight modification for the general superstable 

case. We will not repeat the proof,  but rather give a different and more powerful 

one, enabling us to say precisely when a superstable theory T has a model of power 

omitting a given type q. It turns out that the only influence of  the cardinal K is 

the set of  finite symmetries it forces the model to have. We first note the special 

cases corresponding to the existence of  all symmetries, and no symmetries. 

THEOREM 1.1. The Hanf  number for omitting types is "~+~ ÷ for countable su- 

perstable theories. 

THEOREM 1.2. Let T be countable and superstable, Q a countable collection of  

partial types of  T. I f  there exists a model o f  T of  power Rl omitting each type in 

Q, then such a model exists in power "~. 

Actually we will prove the special case 1.2 separately, as it involves some issues 

not present above the continuum. We will also prove: 

THEOREM 1.3. Let T be countable and stable, Q a countable collection of  par- 

tial types of  T. I f  there exists a model of  T of  power R~+~ omitting each type in Q, 

then such a model exists in power "~1. 

We will give examples showing that the number R~+I in 1.3 is sharp. 

The following was originally defined by Shelah (in an inessentially different 

form) in order to characterize theories having (k,2~)-models.  (See [Sc].) He 

showed there that for regular K, condition 1.4(b) below was equivalent to: 

(~,2~) ~ (k,2~). 

DEFINITION. A combinatorial identity is an equivalence relation I on the set 

of  _<n-tuples of  a set F with n elements, such that: 

(a) If (~/,/~) E / t h e n  ~/,/~ have the same length. 

(b) If (~/,6) E I, and ~/',/~' are subsequences of d,/~ in corresponding positions, 

then (~/',/~') E L 

Given a cardinal K, I is a combinatorial identity of K (I  E Id(K)) if for every 

structure M of power ~ (in a countable language), there exists a 1-1 m a p j  : F ~  M 

such that if (~/,/~) E I then j (~) , j ( f~ )  have the same type in M. 

THEOREM 1.4. Given infinite cardinals ~ < X, the following are equivalent: 

(a) Every countable superstable theory with a model of  power r omitting a given 

countable set o f  types has such a model of  power k. 

(b) r > w, andforsome  regular dr <- K, Id(Kr) = ld(k) .  
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In fact our results give, for any superstable T, an analytic criterion for the ex- 

istence of  a model of  power ~ omitting a given countable set Q of  types. (Consid- 

ered as a subset of  the appropriate Baire space, the set of  Q's omitted in some 

model of T of  power K is analytic in the sense of  descriptive set theory, uniformly 

in T and Id ( r ) . )  One can do better than this, and in addition observe some com- 

pactness phenomena, if one measures size by dimension rather than cardinality. 

If  Pi (i E I)  are stationary types, (~iPi  denotes the type of  an independent se- 

quence (ai : i E I) such that ai ~ Pi. (It has infinitely many variables.) p~ stands 

for (~)~<~p. We say that dimp(M) _> a if M realizes p% The criterion for the ex- 

istence of  a model of  p-dimension r omitting a type q is of  G~-type: for any I E 

Id( r ) ,  every/-symmetric generalized formula extends to another one that visibly 

contradicts q. The definitions will be given in §2. At this point we can state the fol- 

lowing version. 

THEOREM 1.5. Let T be superstable, p a stationary type, Q a countable collec- 

tion o f  partial types. Suppose that for  each I E Id(k)  and q E Q there exists a 

model M of  T omitting q such that I E Id(dimp(M)).  Then there exists a model 

N o f  T omitting each q E Q with dimp(N) = X. 

COROLLARIES (T  superstable, countable, Q a countable set o f  partial types, p 

stationary). 

(a) I f  for  each q @ Q, T has a model M omitting q with dimp(M) = K, then it 

has such a model omitting every q E Q at once with dimp(M) - K. 

(b) I f  Id(K) = Id(X) and T has a model with dimp(M) = K, omitting q, then it 

has such a model with dimp(M) = X. 

Note that (a) is not trivial even when Q has two elements. 

In order to combine the omitting types results with many-cardinal theorems, 

we need the notion of a combinatorial identity of several cardinals. Define: 

I E id(r l  . . . . .  rn) if I is an equivalence relation on (FL U . . .  U Fn) -<m, m = 

Z card(Fi),  F/'s disjoint finite sets, such that I satisfies (a) and (b) of  the defi- 

nition of a combinatorial identity, and for every structure M in a countable lan- 

guage, if P= . . . . .  P,  are subsets of  M and card(P/) = Ki, then there exists a map 

j :  (Fj U . . .  U Fn) -~ M such that j ( x )  E P~ if x E F,, and tp(j(;?)) -- tp(j()~)) 

if (~?,p) E I. 

The fuller version of  the theorem describes when there exists a model omitting 

a countable set of types but realizing ~)g<~pXi, where pi are stationary types, kg 

uncountable cardinals. It allows us to state the following corollary: 

COROLLARY 1.6. Let a be a countable ordinal, ( k , : i < a ) ,  (K~:i<o~) twocon- 

tinuous, increasing sequences o f  cardinals, such that ri = o~ i f f  hi = o~, and K~ = 
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lim(K/:j < i) iff)~j = lim()~j : 1 < i). Let Q be a countable set of  partial types of  

the countable superstable theory T, and let Pi (i < et) be unary predicates of  T. 

Suppose Id()~i : i E J) = Id(Ki: i E J) for every finite J c t~. I f  T has a model N 

omitting each q E Q with card(P~} = ri, then it has a model N '  omitting each 

q E Q with card(P~)  = Xi. 

We also give examples showing that the results cannot be improved in various 

directions; for example, there exists a superstable theory T and a countable set Q 

of  partial types such that T has a model omitting Q of each power Rn, but not of 

power R~. As most of  the examples throughout the paper are of a similar nature, 

we wrote one out in detail (5.1 (a)), the rest more sketchily. 

§5 contains results in the opposite direction, solving a problem from [Ku]. An 

elementary extension N of a model M is called a small extension if for every finite 

subset A of M, every type realized in N over A is realized in M over A. Kueker 

raised the question of  the Hanf  number for this notion: in this case it is the least 

cardinal h such that whenever M is superstable, if M has a small extension of ev- 

ery power below )~, then it has a small extension of arbitrary size. (The correspond- 

ing number for w-stable theories is R1 .) The answer is "~,0,. To prove this we give 

a combinatorial characterization of ' ~  (~ < ~01) using partition theorems with fi- 

nite homogeneous sets; this may be of interest somewhere else. 

The main open problems appear to be the Hanf  number of omitting a single 

complete type in a superstable theory, and the omitting-type behavior of stable the- 

ories between consecutive "~'s. For the first question our results leave only three 

possibilities: "~,o, "~+, and -7++. We do not know which one is correct. 

Throughout this paper, T is stable and countable. We assume a general knowl- 

edge of  [Sh2], including the conventions related to C and C eq (the latter will not 

be used deeply, except in quoting [BuSh].) For the most part only the basic prop- 

erties of independence and of 1-isolation are assumed. A ,g B I c means that A , B  

are independent over C. 

2. Stable systems 

Consider the problem of finding a large structure in a given class, say an elemen- 

tary class with an omitting types condition. One must do two things: find sets with 

enough symmetries to be blown up to the required size; and show that a model in 

the class in question can be built around the expanded set. For theories with Sko- 

lem functions, the second problem is trivial; thus the work in Morley's theorem of 

[Moll,  for instance, concentrates on finding indiscernibles. For stable theories, it 

is well known that large indiscernibles sets exist in abundance. They can be blown 

up, but the second problem then becomes difficult. 
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In the w-stable context, one also has prime models over arbitrary sets, an ade- 

quate substitute for Skolem functions. But in the stable (or superstable) frame- 

work, the closest approach is Lachlan's 1-atomic models. Since the first-order type 

of  a set of  elements does not determine the type of a 1-atomic model over it, one 

must find sets that are symmetric with respect to more than first order properties, 

specifically symmetric with respect to an attempt to build a model around them. 

Such sets will be found using a mix of  stability-theoretic and combinatorial  

methods. 

This section develops the technical results regarding stable theories that are 

needed in this paper. They center around the notion of  a stable system. Let S be 

a nonempty collection of  subsets of  a finite set F such that if a c_ b and b E S 

then a E S. An S-system is an indexed collection (M(s )  : s E S) of  submodels of 

C such that M(s)  c_ M ( t )  if s _c t E S. It is called stable if the models are as free 

as possible from each other with respect to the given constraints; i.e. for each 

s E S, M(s )  d, [ M ( t )  : t E S, t not _> s} ] [ M ( t )  : t E S, t < s l .  Stable systems en- 

joy a certain transfer principle: 

PROPOSlTIOI~ 2.1. Suppose (M(s )  : s E S) is a stable system. Let ai E M([ i }), 

bs ~ M ( s ) ,  and suppose ~O(?t,b), then there exists a formula ,(Yc) true of  

such that in any S-system N, i f  al E N({i])  and ~o(~ ' )  then there exist b~ E 

N ( s )  (s E S) with ~0(~' ,6') .  

We will prove a more delicate version of this, in which we are told how to choose 

the bs's (2.2, 2.3). Together with the existence results for stable systems (2.6, 2.7), 

this is the basis of  the proof  of  Theorems 1.2 and 1.3. To prove 1.4 we need a 

stronger version, that allows us to transfer a system of  elements with partial sym- 

metries, leaving the symmetries intact. This cannot be expected to work in an ar- 

bitrary stable system. We do it for 1-systems, defined below. 

DEFIr~n'ION. Let S be a set of  subsets of  the finite set F, closed under subsets. 

S is considered as a partially ordered index set; we write s < t for s C t. An S-con- 

dition is a finite set 4, of  formulas in variables xi (i E F)  and Ys, j (s E S , j  in some 

index set depending on s), satisfying (a) and (b) below. The variables Ysd are 

jointly denoted as .vs. Let ,I,(s) be the set of  formulas in 4, with variables from 

among [xi : i E s ] tO { Yt : t < s ]. Let 4, (<s)  = U [ 4, ( t)  : t < s }, except if s = [ i } let 

4,(<s) be the set of formulas in 4, with sole variable xi. 

(a) ¢ = Us~s4,(s) .  

(b) For each s E S, 4,(<s) F- (3ys) iXk~b(s). 

LEViM~ 2.2. Suppose 4, is an S-condition, M = ( M ( s) : s) an S-system, ai E 

M([ i }), and each formula in 4, in the x-variables alone is true of& Then there exist 
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bs E M(s )  such that ~b((t, f~). Moreover, i f  S' c_ S & downward closed and bs E 

M(s )  is given for s E S', and ~cb(s)((ai : i Es) ,  (bt: t <_ s)) for each s E S', then we 

can choose bs E M(s )  for  s q~ S' such that ~ ( 6 , f ~ ) .  

PROOF. Maximize S' and bs (s E S')  such that the condition holds. If S' ¢ S, 

choose s E S - S' of  minimal size. Then ~¢(<s) ( (a i : i  E s) , (bt  : t < s)). By (b), 

there exists b~ E M(s )  such that ~ ¢ (s) ((ai : i E s), (bt : t _< s)). So S' can be en- 

larged to S' U Is}, a contradiction. Thus S = S'. By (a), ~ ( 6 , 6 ) .  

DEFINITION. A type q is locally (or 1-) isolated if for every ¢(x,.9) E L there 

exists 0 E q such that for all/3, if ~o(x,/~) E q then 0 I- ~o(x,/3). A model M is 

1-atomic over a set A c_ M if for every ~ from M, tp(~/A) is 1-isolated. M = 

(M(s )  : s E S) is a 1-system if it is an S-system, and for each s, M(s )  is 1-atomic 

over U [ M ( t ) : t  < s], and M({i}) is 1-atomic over M ( O )  U [ai} for i E F, and 

[ai:i E F} is independent over Mo. (It follows that M is a stable system; this is 

evident from the proof  of  Proposition 2.3.) 

PRovosmos  2.3. (a) Let (M(s )  : s E S) be a 1-system, S c_ P ( F ) ,  and let ai E 

M([i}) (i E F),  b~ E M(s )  (s E S). Suppose ~O(6,f~). Then there exist G E M(s )  

(s E S) and an S-condition ~(~;~,:~) such that ~ ( ~ ,  fJ,6) and • ~- O. (The 2's are 

to be considered as y-type variables.) 

(b) Let ( M ( s ) : s E S) be an S-system, S c_ P ( F),  and let a~ E M([ i ]) (i E F) ,  

bs E M(s )  (s E S). Suppose ~O(~,f~). Then there exists an S-condition 4,(~;9~,£) 

such that 0 E ,b, and every ~ E '~ in the x-variables alone is true o f  {t. 

REMARK. ~ may have parameters from M ( ~ ) .  But in 2.3(b), if Mo ~- M ( O ) ,  

0 ~ L (M o), and each ai ,1, M(¢~) I Mo, then the parameters of  • can be restricted 

to M0. 

PgOOF ov 2.3(a). We use induction on card(S).  Let s* be a largest element of  

S. Let S -  = S - Is* }. We assume s* is not a singleton; there is a slight difference 

of  detail in the other case, but it is easier. Let ~ = [ 0 } with special variable ys..  

By hypothesis, t pa (b~ . /U  [ M ( t ) : t  < s* }) is isolated by some formula ,p(y~.). 

Adding some b~'s if necessary, we may assume the parameters of ~ are (b~ : t < s* ). 

C~aIM. ~o isolates a zX-type over U [ M ( t )  : t ~ S -  }. 

Pgoo~. Suppose not. So there exists a A-formula ,p' over U {M(t )  : t E S -  } 

such that ~0',  where 0' = (~y~.)(~o & ¢')  & (~y*)(¢  & -~o'). Again we may as- 

sume the parameters of ~' are (b, : t G S- ) ;  so we can write ~' = ¢'(y~., b, : t ~ S - ) ,  

O' = O'(b~ : t ~ S - ) .  Applying the induction hypothesis to S -  and 0', we get an 
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S--condit ion ,I,' with O'(Yt: t E S - )  E 4'. Let o~ (~?) be the conjunction of  all for- 

mulas in the x-variables in 4'. Since {ai : i E F} is independent over M ( O ) ,  there 

exists a [ E  M ( O )  (i E F - s*) such that ~t~(a[ : i  E F) ,  where a[ is ai if i E s*. 

Let M'(s )  = M ( s  O s*) for s E S-.  Then (M' (s )  :s E S - )  is an S--system, so by 

Lemma 2.2 there exist b; E M ' ( s )  (t E S - ) ,  with b; = bt if t < s*, such that 

~ ' ( b t '  : t E S - ) .  In particular, ~O'(bt : t E S - ) ,  so ~ does not isolate a A-type 

over [ b; : t E S -  }. But [ bt : t E S -  ] _c U { M ( t )  : t < s* 1, a contradiction. 

In particular, ~, (ys. ,  bt : t < s* ) ~ 0 ( ai ( i E F)  , Ys * , bt : t E S -  ) . Let 0 '(xi : i E F, 

Ys:S E S - )  be a formula such that ~O'(ai:i E F, bs:s E S - ) ,  O'(xi: i E F, ys :s  E 

S - )  }" (3ys*)~O(ys*,Yt: t < s*), and 

0 '(x~ : i E F, ys: s E S - )  & ~(y~. ,Yt: t < s* ) [- 0 (y~. ,Yt : t E S-,x~ (i E F)).  

By the induction hypothesis, find an S--condi t ion ,I,' with 0' E ~' ,  such that 

~ ' ( a i : i  E F,b~:s E S - )  (after swallowing the c~'s into the bs's once again). 

Let ~ = 4 '  U O(Ys*,Yt: t  E S - , x i ( i  E F)).  One sees immediately that ~ is an 

S-condition. 

PROOF Or 2.3(b). We proceed as in the proof  of 2.3(a): use induction on 

card(S); let s* be a largest element; again we will treat the non-singleton case, the 

other case being different only in that M U [ail (where s = l i l) replaces U IM( t )  : 

t < s l .  Let S -  = S - Is* 1, A = 10 } again. Now tp~(b~-/U I M ( t )  : t < s* } need 

not be isolated. However, M(s* )  ,l, U I M ( t )  : t  E S-}  [ U { M ( t )  : t  < s* }, so by 

the open mapping theorem one can find ¢(y~.) E L ( U  [M( t )  : t  < s* l) such that 

~,p(bs.), and for any b~. E M(s*) ,  if ~o(b~.)  then ~O(b~ :s E S) ( t he '  applies 

to b~. only). Choose ¢ '(y~.)  stronger than ~,(y~.) with parameters in U {M(t)  : 

t < s* I such that ~, does isolate a A-type over U I M ( t )  : t < s* I. As in the proof  

of (a), ¢ isolates a A-type over U [M( t )  : t E S-} .  Except for the fact that ¢ is not 

true of b* (which we are no longer claiming), we find ourselves in precisely the 

same situation as in the last paragraph of  the proof  of  (a), and so we finish. 

PROOF OF THE REMARK. Since each ai ,1, M ( O )  I M0 and the a i'S are indepen- 

dent over M(~3), they are independent from M ( O )  over M0 as a tuple, so we 

may use the open mapping theorem. 

Lemmas 2.3(b) and 2.2 yield Proposition 2.1. However, we will have to use the 

lemmas rather than the proposition. We proceed to prove symmetric versions of  

Lemmas 2.2 and 2.3(a). We know of  no plausible symmetric parallel to 2.3(b); this 

is one of the main reasons we cannot generalize Theorem 1.4 to the stable case. 

(Note that below "~, where there are no symmetries, we do have a generalization; 

the higher price there reflects the difference between 2.6 and 2.7.) 
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I f  I is a combinatorial identity on F, write s -- t (mod I) if for some i, a~ . . . . .  a~, 

bl . . . .  ,bi,  s = {al . . . . .  ai}, t = {bl . . . . .  bi}, and (tL/~) are in L Note that i f l i s  

a combinatorial identity of any cardinal, given a and t,/~ is determined uniquely. 

m 

DEfiNITION. (1) Let M = ( M ( s )  : s E S) be a 1-system, 4' an S-condition, and 

e a function carrying the variables of 4, to elements of U M ( s ) .  (M,4",e)  is an 

S-system if the variables of  4"s go to M ( s )  under e, and ~4"(e(x i ) ,e(y~)  : i ,s) .  

(2) An S-system (M--,4",e) is/-symmetric (via h) if for each pair s , t  E S with 

s - t(mod I),  we are given maps h( s , t ) , hvar (S , t )  such that: 

(a) h ( s , t ) : M ( s ) ~ M ( t )  is an isomorphism. 

(a') hvar(S,t) takes the variables of ~ to those of 4't. It takes x-variables to 

x-variables and y-variables to y-variables; and ~,4"t differ only by this 

change of variables. 

(b) h ( s , s )  is the identity; (b') hvar(S,S) is the identity. 

(c) I f s  = {ul . . . . .  u~}, t = Iv1 . . . . .  ok}, s' = {ui~ . . . . .  ui,}, t '  = {v i i  . . . . .  V in l ,  

(~, O) E I and s, t E S, then h (s', t ')  is the restriction of h (s, t) to M ( s ' ) ;  

and similarly (c') for hvar. 

(d) h ( s , t )  o h ( t , u )  = h ( s , u )  whenever all are defined, and likewise (d') hvar. 

is/-symmetric if hvar exists satisfying (a-d). 

M is/-symmetric if h exists satisfying (a'-d'). 

(e) e .hvar (S , t )  = h ( s , t ) * e .  

PROPOSITION 2.4. Suppose ( M ( s) : s c_ F)  is an I-symmetric  1-system, 4" is an 

1-symmetric P(F) -cond i t ion ,  and one is given eo(xi) (i E F)  so that (e) holds f o r  

the x-variables and  ~ ( ( e o ( x i )  : i E F)  f o r  each ~ E 4" in the x-variables alone. 

Then there exists e extending eo such that (M,4",e)  is an 1-symmetric S-system. 

PROOF. Assume e has been defined on the x-variables and on the ys-variables 

for s E [F] <i, agreeing with eo on the x-variables, and so that (e) holds for s, t of 

size <i,  and ~4"s(e(yt)  : t <_ s, x i : i  E s) for s E [F] </. Let R be a subset of [F] i 

such that for every i-tuple ~ from F there is a unique s E R such that ~ is/-equiv- 

alent to some enumeration of s. Find e(ys)  (s E R)  so that e(y~) E M ( s )  and 

~4"~(e(xi, e ( y t )  : i E s, t <_ s) .  Now define e(y~) on all s E IF] i so that (e) holds 

for s, t o f size i; there is a unique way to do it. By symmetry, ~ 4'~ (e (xt), e (Yt) : i E s, 

t _< s) for all s E [F] i. This suffices by the definition of an S-condition. 

PROPOSITION 2.5. Let  ( M ( s )  : s E S) be a l-system, 4~ an S-condit ion and e an 

assignment so that (_~t,4',e) is an I -symmetr ic  S-system; and  suppose ~O( e ($ ) ,  

e (p ) ) .  Then there exists 4" extending 4" and  e' extending e so that 4" ~- O, and 

(M,4 ' ;e ' )  is an I -symmetr ic  S-system. 
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PROOF. It is easier to prove something slightly stronger. Let S k = Is E S: 

card(s) _< k l. Call xI, an S-k-precondition if it satisfies the definition of  an S-con- 

dition, with (b) replaced by: 

(bk) For each s E S with card(s) > k + 1, ~ ( < s )  F (3ys) iX~b(s). 

Call (~t, ~I,,f) an/-symmetric S-k-pre-system if it satisfies the full definition of  an 

/-symmetric system, except that 9 need only be an S-k-precondition rather than 

fully an S-condition. 

PROPOSITION 2.5 (technical version). Let (M,,b, e) be an 1-symmetric S-k-pre- 

system, and let 0 be a formula involving only variables xi and y~ (s E S k) such 

that ~O(e(xi) :i E F, e(ys) :s E Sk). Then there exists an I-symmetric S-system 

(M,~ ' , e ' )  with ,b' D_ ~, e' D_ e, a n d ~  ~- {O]. 

PROOF. Induction on k. As usual the details are slightly different when k = 1, 

and we assume k > 1. Let/9' be the conjunction of  the following: 0; all formulas 

of  the form ( 3 y s ) / ~ ( s ) ,  where s E Sk+l; a n d / ~ ( s )  for s E S k. Let e k be the 

restriction of  e to the variables xi and Ys (s E Sk). By 2.3(a) it is possible to find 

an S-condition ~* F O' and e* extending e k such that (M,~*,e*)  is an S-system. 

Say (M--,cb, e) is /-symmetric via h, hvar. For s , t  E S k with t - s(mod I)  and z a 

yt-variable of  ~* not occurring in ~, let Ys, tt:z) be a new variable (of type ys). If  

z does occur in ~, let Y,.ct:z~ be hvar(t,s)(z). Let y~ be the union of  the variables 

Y~.(t:z) over all appropriate t,z. Note that whenever s, t E S k, t - s(mod I) ,  s' c_ s, 

and Ys',(u:z) is defined and occurs in ¢, we have hvar (s, t)(y~;t,:z~) = Yt',(u:z), where 

t '  is the subset of  t corresponding to s '  c_ s (as in (c) of  the definition of  I- 

symmetry). Use this equation to define hvar (S, t)  (y~;~,:z~) for new variables also. 

Let e * ( Y s . ( t , z ) )  = h( t , s ) (e ( z ) ) .  So hvar extends the previous definition, e* extends 

e k, and one checks easily that (a-e) are satisfied. Let * = I~o(y~,(,:z)) : ~o(z) E O~,l. 

Then (M,O U xI,,e U e*) is an/-symmetr ic  S-(k  - 1)-presystem. Induction does 

the rest. 

The following are the existence lemmas for stable systems in the stable and su- 

perstable cases. 

LEMMA 2.6. Let N be a model o f  a stable theory T, and for  i E I 1 . . . . .  n ] let 

Mi be an elementary submodel o f  N in the language enriched with a predicate for  

MI . . . . .  Mi- l .  For s E S let M(s )  = n l Mi : i ~ s]. Then (M(s )  : s c_ {1 . . . . .  n]) 

is a stable system. 

PROOf ([Sh2]). Induction on n. Checking that M(s)  J, M ( ~ s ) I M ( < s )  in- 

volves two statements, according to whether or not n E s. 
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(a) If  A ,1, B I C  in N, and M is an elementary submodel of  (N ,B) ,  then 

A O M d ,  B I ( C N M ) .  

(b) If A ,1~ B I C in N, and M is an elementary submodel of  (N ,A ,B ,  C), then 

A 4, ( B U  M)  I ( C U  (A N M ) ) .  

(a) is clear e.g. from the 2-rank characterization of forking. (b) follows formally 

from: A U Bd, M[ (A 17 M U B O M),  a special case of (a). 

DEFINITION. Let M c_ N c_ C. Then M c_~ N if whenever a formula so (x, ~) 

with parameters in M has a non-algebraic solution in N, it has one in M. 

We will show below that whenever (M(s )  : s E S) is a stable system in a super- 

stable theory, M(s)  c_,o N (s E S), F a finite subset of N, A = Us M(s)  U F, then 

there exists N '  c_ N, A _c N', N '  1-atomic over A. One concludes immediately: 

LEMMA 2.7. Let M c_ N, M c_,a N, and let I c_ N be independent over M. Then 

there exists a stable system ( M ( s ) : s E [ I] <~) such that M(  ~3 ) = M, a E M([ a }) 

for  a E I and M([a] )  is l-atomic over M O [a ] ,  and M ( s )  is 1-atomic over 

U [ M ( t )  : t < s} i f  card(s) _> 2; and M ( s )  c_ N. 

For the record, we also recall: 

LEMMA 2.8. Let T be countable, M a model of  T o f  regular cardinafity x. 

(a) I f  T is superstable and K > o~ then there exists a countable B c_ M and an in- 

dependent set I over B, I c_ M, card(I)  = x. I f  ~ > 2 ~°, I can be taken to be a 

Morley sequence over B. 

(b) I f  T is stable and x > o~l, then there exists B c_ M, card(B) < x, and an in- 

dependent set I over B, I c_ M, card(I )  = ~. 

PROOF. We prove (b) for example. Let M = [ a~ : o~ < K ]. For each o~ < ~ of  

cofinality o~t, find/3(o~) < o~ such that tp(a~/{a~:~ < o~1) does not fork over 

( av : ~, < ~ 1. By Fodor's lemma, there exists a stationary S such that 3 (a )  = B for 

a E S .  L e t B =  [at  :~/<~3], I =  {a~:o~ES}.  

LEMMA 2.9. The following are equivalent: 

(a) M <ha N. 

(b) For every finite Fc_ M, so ~ L ( M ) ,  b E SON, and O(x,b) such that O forks 

over F, there exists b' E SOM such that O(x, b') forks over F. 

(c) Let F ~ M be finite, b E N, a d, MblF, and suppose so(x, a) & 0 (x, a, b) is 

consistent and forks over F U [a}. Then there exists b' E M and O' such that 

so(x,a) & O'(x,a,b')  is consistent and forks over F U  {a]. 

PaOOF. (C) = (b) ~ (a) are downhill. (For (b) = (a) let 0 (x ,b)  = (x = b) . )  

(a) = (c): Let q = s tp (a /M) .  Define an equivalence relation by: zEz'  iff  
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( d q y ) ( v x ) ( ¢ ( x , y )  =. O(x,y,z) - O(x,y,z ')) .  As O(x,a,b) forks over M U  {a}, it 

is clear that b/Eq~ M. Choose b'  E Msuch that ~(d q y ) (3 x ) (~ (x , y )  & O(x,y, b')), 

and b ' / E  ~ acl(F) .  Let r = s tp (b ' /F) ,  and let c~(x,y) = (drZ)O(x,y,z) .  Then 

ct is over acl(F) ,  so it is not the case that ~ ( d q y ) ( v x ) ( ~ ( x , y )  =. O(x,y,z)  - 

ot(x,y)) .  Let O'(x,y ,z)  = [O(x,y,z) ~ u ( x , y ) ] .  Then O'(x ,a ,b ' )  satisfies the 

requirements. 

We proceed to prove the statement preceding Lemma 2.7. It is not true in gen- 

eral, even for a superstable theory, that there exists a 1-isolated model over a given 

set A contained in a given model N_D A. In [BuSh] it was shown that this is true 

if one also assumes NDOP, and if A is the union of  a certain tree of  models. We 

need to know this without the NDOP assumption, and dealing with arbitrary sta- 

ble systems, rather than trees. We will recover on the way Theorem C of  [BuSh], 

as well as the results of  §6 there (see remark (b) at the end of the section). T is as- 

sumed superstable. 

DEFINITION. L e t q = t p ( a / B ) ,  X =  [ c E C : c ~ q ] .  qis  homogeneousi f there 

exists B'  _D B, an oo-definable group H and a definable transitive action of  H on 

X (defined over B') ,  so that H acts on X as a group of  automorphisms over B'. 

Recall also that q = t p (a /B )  is c-isolated if for some ~ E q, there is no type q '  

over B with ~ E q '  and R ~ ( q  ') < R ~ ( q ) .  

The following lemma appears in [BuSh] as 6.10. 

LEMMA 2.10. Let q be homogeneous and c-isolated. Then q is 1-isolated. 

PROOF. Let X, H, ~p be as in the definition of  homogeneity and c-isolation. By 

[H2, Thin2'] there exist definable X', H '  and a definable action of  H '  on X ' ,  ex- 

tending the action of H on X; moreover we may take X '  _c ~c. By the choice of 

~, every type over B'  of  elements of  X '  has maximal R ~, hence is generic. By 

[H2, 2.2d], for each finite A, there are only finitely many restrictions to A of ge- 

neric types; hence in this case only finitely many A-types over B in X'. So in fact 

every type over B'  inside X '  is 1-isolated. 

Fix a model N c_ C of  T for the rest of  the section. The notion of  m-isolation 

defined below is relative to N, and all sets are assumed to be subsets of N. 

DEFINITION. q = tp (a /B)  is m-isolated in N if either 

(mr) q homogeneous and c-isolated, or 

(m2) for some ~ E q, for every model M <,a N with M c_ B, every strong type 

q '  over B realized in N with ¢ E q '  is orthogonal to M. 

Note that in either case, if M <,a  N and M _c B, then aB <. B IM (in case (I) by 

2.10). Hence if B is m-constructible over A and M <,a N, M _  A, then B ~ A[M.  
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LEMMA 2.11. Let A c_ N and suppose A gna N. Then there exists d E N - A 

such that d/A is m-isolated. I f  A is a model, d can be chosen m2-isolated. 

PROOF. I f  A #: acl(A), choose d E acl(A) - A. Assume A = acl(A) from now 

on. I f  A is not a model, find ~0 E L(A)  such that ~o N ~: O but ~0 N N A = O; if A 

is a model but A gna N, find a finite Fc_ A and ~0 E L(A) such that ~0 N ~ acl(F),  

but ~o N N A c_ ac l (F) .  In either case choose ~0 of  least possible R ~. I f  ~0 satisfies 

(m2) we are done (choose any d E ~0 N - A) .  Otherwise there exist M c_ A, M _<ha N, 

and c E ~0 N - A such that tp(c/A) ,f. M. Fix M and c. 

Pick cl E dcl(Ac) with q = stp(cl/A) semi-regular. Let 

~I, = [~b(x,b): there exists a strong type r with ~b E r and r ~ q}. 

For  a given ~b(x,y), [b:~b(x,b) ~ xI,} is an oo-definable set ([H1]). As q = 

stp(cl/A) is semi-regular and ,I~M, if q '  is conjugate to q over M then r _L q iff 

r _l. q'. Thus a/ is  invariant under A u t ( C / M ) .  Combining the two observations, we 

see that: (*) if ~b(x,b) ~_ • then for some ~o E tp(b/M), for all b ' ,  if ~ o ( b ' )  then 

~b(x,b') E ~.  
Choose O(x) E L(M) O • of  least possible R ~*. 

Case 1. Cl d~ OClA. In this case A cannot be a model. For 0 E ,I,, so for some 

e ,1, cl I A,  and a E 0 c, cl ~ alAe. Find oe(x,y,z) E tp(cl ,a,e/A) such that  

~(cl,Y,Z) forks over A. We have: ~(dqx)(3y)(O(y) & ~(x,y,e)).  I f  A were a 

model, then for some e' E A, ~(dqx)(3y)(O(y) & a(x,y,e')),  so ~(3y)(O(y) & 
a(cl,y,e ')) ,  whence cl ~ 0 c I A. Thus by the choice of  ~ when A is not a model, 

it c-isolates a type. 

By [HI] ,  there exists d E dcl(Ac~) - A such that tp(d/A) is 0-internal; and by 

[H2], letting X = {x: tp(x/A) = tp(d/A)], G = Aut(X/A tO 0 c) is oo-definable. 

By the case assumption (and the fact that A = acl(A)),  G acts transitively on X. 

Thus stp(d/A) is homogeneous,  and is c-isolated since tp(c/A) is. Hence d is 

m~-isolated. 

Case 2. c ,~ 0 c I A. Find a finite E c_ 0 N that c ~ E I A;  choose E as small as 

possible. Say cE d~ A I F', with F _ F ' ,  and choose a finite Fo c_ M such that 

F' ,1, M IFo, and 0 is over F0. 

CLAIM. Let e E E, E '  = A tO E - [ e 1. Then e ,1, E '  [ M. 

PROOF. By the minimality of  E, c d~ E ' IA ,  so c 4, e lE'. Suppose e 4, E' IM.  
Find O'(x,e') E tp(e/E') such that O'(x,e') forks over M, and 0'  = 0. As e4, ciE', 
0' ~_ ~. By (*) and Lemma 2.9(b), there exists e" ~_ M s u c h  that O'(x,e") E • and 

0 (x, e") forks over Fo. This contradicts the minimality of  R ~* (0).  
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By the claim, i f E  = {el . . . . .  en], then ek/Ael , . . .  ,ek-~ I M f o r  each k. By tran- 

sitivity, A,e~ . . . . .  en are independent over M. So A ,I, EIM.  Now go in the other 

direction: c4L E IA. Find ~o' E tp(c/AE) such that ~o' forks over A. By 2.9(c), there 

exists ~o" E L ( M )  such that ~," & ~o is consistent, and ~o" forks over F'. Let c' 

be any realization (in N) of ~o" & ~o. Then c' ~, MIF ' ,  so c' ~ acl(F).  Also 

R~(c ' /A)  < R~*(c'/F ') <_ R°*(~o) = R~*(c/A). This contradicts the minimality of 

R=(~o), showing that case 2 cannot in fact occur, and proving the lemma. 

COROLLARY. For every B c_ N there exists an na-submodel o f  N containing B 

and m-constructible over B. 

LEMMA 2.12. Let M c_ N be m-constructible over U s e s M ( s )  tO F, where 

(M(s)  : s E S) is a stable system of  models such that M(s )  <-,a N, and F c_ N is 

finite. Then M is l-atomic over Us~sM(s)  tO E 

PROOF. We show by induction on the length of the construction that if A is m- 

constructible over Us~sM(s)  U F, then it is 1-atomic over UsesM(s )  U F. Let 

a/A be m-isolated. If a/A is ml-isolated, then by 2.10 it is l-isolated. In the other 

case, stp(a/A) ± M(s)  for each s E S. Let F '  be a finite set containing Fsuch that 

a ,1, A I F', and let B = Us M(s)  tO F'. Then stp(a/B) & M(s )  for each s E S; and 

it suffices to show under this hypothesis that tp(a/B) is l-isolated. 

Suppose tp(a/B) is not 1-isolated; so for some A = (a(x,.P)J, no ~o E tp(a/B) 

isolates tpa(a/B). Let/3(y)  = (drx)o~(x,y), where r = stp(a/B). Let L1 be the 

language L enriched with a constant for each element of F ' ,  and a predicate Ps 

for M(s)  (s E S). Consider the following Li-type: 

F (x,.P) = [y is a tuple from Us Ps U F ' ]  O [~p(x) : ~o E r] O [~x (x,.P) */3(P)] .  

Then F is finitely satisfiable in (C,F ' ,M(s)  :s E S). Hence F is realized in an ele- 

mentary extension (C*,F',M*(s) :s E S) of this structure, say by a"/~'. For Tc_ S, 

let M[TI  = U s e r M ( s ) ,  M*[TI = Us~rM*(s ) ,  M*{<s} = M*l{s ' : s '  <_ sl l ,  

M*[ ~sl = M*l{s' : s is not _<s' }1. Then we have: 

(i) C ,1, M*{ T] [M{ TI for each downward-closed T__q S. 

(ii) M*(s) d, M*( ~s) [M*( <s). 
(iii) a '  ~ r and a ' ,~  (UsM*(s)  U F ' )  IF :  

From (i) and (ii) we can conclude: 

(i') M*(s) ,b C IM*(~s) U M(s )  (with T = {s' :s <_ s' = s = s' }). 

(ii') M*(s) d, M*( As) [M*(<s) U M(s). 
Hence 

(iii) M*(s) d, M*l~sl 13 C[M*(<s)  U M(s) .  
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We will now get a contradiction by proving that for every subsystem T of S, 

a'J, M*[ T I U M[ S I IF'. Use induction on card(T). Let s be a maximal element 

of T, T' = T -  [sl. By (i), as stp(a/F')  is based on (2 and orthogonal to M(s) ,  

stp(a/F') ± M*(s). Hence stp(a/F') ± (M*(<s) U M(s)) .  But by (iii), M*[ T'I  U 

M]S} U F',I, M*(s) I (M*(<s)  U M(s));  and by induction stp(a ' /F')  is parallel 

to stp (a'/M*[ T' ] U M[ S ] U F' ). By the orthogonality, 

a'J,M*(s) I (M*{T'} UMIS} OF'), 

and transitivity finishes the induction step. 

COROLLARY. Let T be superstable, N a model, M(s )  c_n~ N, (M(s)  : s E S) a 

stable system, and F c_ N finite. Then there exists M c_,~ N, Uses M(s)  U F c_ M, 

with M l-atomic over UsEs M(s )  U F. 

REMARKS. (a) In fact we proved j-isolation and not only 1-isolation everywhere. 

(b) If it happens that T has NDOP and A contains a maximal tree of na- 

submodels of N, then no type in N over ,4 can be mE-isolated; so an m-construc- 

tion is an ml-construction. This recovers §6 of [BuSh]. 

(c) In general, homogeneous types need not be c-isolated; indeed there are of- 

ten homogeneous types over models. But in an ~0-stable theory, or in a context 

where for some reason the group H acting on q is definable, q is (even outright) 

isolated. 

3. Models  of  size continuum 

We prove here Theorems 1.2 and 1.3, as well as 

PROPOSITION 3.1. Theorem 1.3 is false if Ro,.l is replaced by ~ < 2 ~o ( n <_ w ). 

The proof of 3.1 shows that the elementary submodel structure of stable mod- 

els can be arbitrarily complicated; in particular there exists a stable Jonsson model 

in every cardinal in which there exists a Jonsson model at all (while there are no 

superstable Jonsson models of any uncountable power). 

Theorems 1.2 and 1.3 have a "downward" part, yielding countable information 

from the existence of a large model omitting the types in Q, and an "upward" part, 

using this information to get a model of cardinality "~1. The upward part is the 

same, Proposition 3.3; but it has a considerably simpler form if Tis superstable. 

We assume from now on that T is stable and countable. 

PROPOSITION 3.2. Let T be a superstable, countable, complete, first order the- 

ory, Q a countable set of  partial types. Then the following are equivalent: 

(a) T has a model of  cardinality "~l omitting each q E Q. 

(b) T has a model of  cardinality RI omitting each q E Q. 
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(c) There exists a countable M and an independent set I over M such that no 

q E Q is isolated over M U  I, and for  each a E l a n d  each finite A, {b E I: 

tpa ( b /M)  = tpa ( a/M)} is infinite. 

RWMARKS. (1) Suppose M is a countable model of a superstable theory contain- 

ing an infinite Morley sequence J, and omitting q. Then if I U J is a Morley se- 

quence and I,b M I J, it is easy to see that q is not isolated over M U L Thus (c) 

holds. The fact that (b) follows in this special case was proved by Steinhorn, and 

was improved to (a) by Newelski under certain additional conditions on T and on 

the set-theoretic universe [Ne]. 

(2) The density condition in (c) cannot be weakened to a condition using for- 

mulas rather than /X-types. To see this, let Tn = [7 E n~o:n = 0 or 7(0) > n],  

T = Un T,, and build an example with equivalence relations E, (7 E T), and con- 

stants c, (7 E T -  (0)). For each ~ E T, with rt(0) > n, [c,A~ :n < w] lie in distinct 

E,-classes, and E, An refines C,A,/E, -- [C,A,] into infinitely many classes. Let 

M = [ c~ : ~ ] be the prime model. Find I such that for each 7, there is a unique 

x E I such that (x, x) E E~ but (x, cT) ~ E, for any ~. Let Q = { q ], q = q (x ,y )  = 

l x  :g y} U [(x,c,) e E,  -=- (y,c~) e E , : u , ~ l .  

PROPOSITION 3.3. Let T be stable, countable. Let M be a model o f  T, I an 

infinite independent set over M, Q a countable set o f  partial types. Suppose 

I ( a , h )  = [a' E I: tp~(a/M) = tp~(a' /M)} is infinite for  a E I, and: 

(*) I f  cj , .  . ., c, E I, /x c_ L finite, and K c M is finite, then there exist ai E 

I (c i ;A)  and a stable system ( M ( s ) : s  E P([1 . . . . .  n])) with ai E M({i]),  ai d~ 

M ( Q ) [  (M(~3)  n M ) ,  K c_ M ( • ) ,  and M ( G )  ,1, M[ ( M ( Q )  O M); and 

M([ 1 , . . . ,  n ]) omits each type in Q. 

Then T has a model o f  power "~ omitting each type in Q. 

LE~r~A 3.4. (a) I f  T is superstable, then 3.2(b) implies 3.2(c), and 3.2(c) im- 

plies the hypothesis o f  Proposition 3.3. 

(b) I f  T is stable, and has a model o f  power ~,~+~ omitting each q ~ Q, then the 

hypothesis o f  Proposition 3.3 holds. 

Proposition 3.2follows, as do Theorems 1.2 and 1.3. 

PROOV. (a) Let N be a model of power R~ omitting each q E Q. By 2.8 there 

exists a countable Mo c_ N and an uncountable independent sequence J over M0 

with J c_ N. Let 

I = {a E J :  for each A, [b E J :  tp~(b/Mo) = tpa(a/Mo)] is uncountable]. 
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Then J - I is countable, and M0, I satisfy 3.2(c). If al . . . . .  an E I are distinct, let 

N be a countable model containing M0 U [ a l , . . . ,  an } and omitting each q E Q. 

Then by 2.7 a stable system M(s) :s ~ 11 . . . . .  nl  can be found, with M ( • )  = M0 

in fact, and M(s) c N. This gives (*). 

(b) Let N be a model of cardinality X+ = ~+~ omitting each q E Q. By 2.8, 

there exists M c_ N, card(M) = 9~, and J c_ N, I independent over M, card(J) = 

X +. As in (a) we can get I___ J such that if a E I and A is finite, then l (a,A) has 

cardinality ),. Given a~ . . . . .  a~, from I and finite A and K, let Is = I(a'i, A). Choose 

Nl . . . . .  Nn and a l , . . . ,  an as follows. Given No,. . .  ,Ni-l, let Ni be an elementary 

submodel of N in the language enriched with predicates for M,K,I~ . . . . .  In, 

Ni, .  •. ,Ni-l ,  such that: 

(a) card(Ns) = Rn-i, 
(b) card(N/tq Nl n . . .  N Ni-1 Iq Ij) = Rn-i for each j  >_ i, 

(C) al . . . . .  ai-i  E Ni,  

and choose as E li fl N~ N . . .  fq N/_ ~ such that as ,1, Ni I M. (All but Rn-s elements 

of Ii have this property, while by (b) for i - 1, ca rd( / /N Nl N . . .  N Ni-1) = 

~ n+l--i.) 
For sO_ I1 . . . . .  h i ,  let M(s) = A l N i : i ~  s}. (So M ( l l , . . . , n } )  = N . )  By 2.6, 

this is a stable system. Clearly ai E M([ i 1). Since Ni is an elementary submodel 

of  N in the language with a predicate for M, a special case of  2.6 says that 

N i ,g M] Ni f"l M. In particular, M(f3) ,b M INi N M. So Cb (M(f3) /M)  ~ N i for 
each i. Thus Cb(M(f3) /M)  c_ (]~N~ = M ( O ) .  So M ( ~ )  ,1, M I M ( ~ )  tq M. It 

remains to prove that ai d~ M(f3) I (M( f3) Iq M).  By the choice of as, as ,1, Ns I M. 
So a, J, M(O) I M. By the previous independence equation and transitivity, we 

have what we want. 

[A]X denotes the set of subsets of  A of  size X. 

PROOF OF PaoPosmoN 3.3. By a L6wenheim-Skolem argument, we may as- 

sume M , I  are countable. Let x, (*7 E 2 '~) and y~.m (s a finite subset of 2 ~, m < oJ) 

be variables. (Yt.m counts as a y~-variable if t _< s.) We seek a consistent type r~ in 

these variables such that: 

(a) For each s E [2~] <~, each n-tuple y ~ , . . .  ,y ,  of y~-variables, and each 

~P(xi(i E S),y,Z) E L, either - ( 3 z ) ~  is in r~, or else for some y~-variable Yn+l, 

~P(xi(i E s),p,Y~+I) is in X;. 
(b) For each variable y and each q E Q, for some 0 E q, -O(y)  E F,. 

(c) If  r/~: v, then x~ :# x~ is in Z;. 
We will build ~2 in ~0 steps. At a finite stage r we will have a P(2~)-condition ~ 

(over M) in the variables xs (i E 2 r) and Y~.m (s G 2 r, with the same convention on 

y~-variables). 
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NOTATION. (iX) If  S_C 2 ~, let s i r =  [~/[r:~ E s}; if y = Ys, m, let y l r = y s l r . m .  

We will use this notation only when card(s[ r) = card(s) .  

(/3) Let cI,~ be the set of  formulas in cI, r mentioning only x-variables. 

(3') If  rl < r and 7* extends 7 for ~ in 2 r~, let 0* 1 be the result of  replacing x~ 

by xn. and Y~I . . . . .  rtn, m by y, ;  ..... ~;,m in ,I~. 

The intention is to let r. = [$(x , ,  . . . . .  Xrln,Yl . . . . .  Ym) : {71 . . . . .  7m} = S, each 

Yi is an s-variable, and for some r < o~ such that 71tr, . . . .  7nJr are distinct, 

~(x , t  Ir . . . . .  x , . i r , y l [ r ,  . . . .  Ymir) is in Or}. The consistency of  this r. follows 

from the following requirements on the cI,/s: 

(i) There exist distinct a, E I(7 E T )  such that ~0rX((a, : 7 E T) ) .  

(ii) If rn < r and 7" extends 7 for 7 in T ' ,  then ~I'r _D cI,*. 

In order to guarantee (a) and (b), we also need: 

(iii) For each 9 ( u l  . . . . .  un , z )  E L ,  for some r < oJ, for each n-tuple 

( w l , . . . , w n )  of  variables of  the form xi ( i E  T )  or Ys, m (s c_ 2 r, m < r), 

either - ( 3 z ) 9 ( w l  . . . . .  w~,z)  is in Or, or for some variable w of  CI, r, 

~( wj . . . . .  wn, w) is in Cr. 

(iv) For each m, and each q E Q, for some r < o~, for each k-tuple ~ of  distinct 

elements of  T ,  there exists 0 E q such that -O(y~,m).  

Thus modulo trivial bookkeeping, we have to prove the following claims. 

(1) Let ~I'r be a p(2r)-condit ion satisfying (i), and let R > r. Then there exists 

a p(2R)-condition OR satisfying (i) such that the pair satisfies (ii). 

(2) Let ¢ be a P(F)-condi t ion,  and suppose ai E I and ~¢X(ai:  i E F) .  Let 

9(y~ . . . . .  y~ ,z )  be a formula, where Yl . . . . .  y ,  are variables of  ~. Then there ex- 

ists a P(F)-condi t ion  ,I,' _ • and a~' E 1 such that ~O~(a,.' : i E F),  and either 

- ( 3 z ) ,  E ¢ ' ,  or ~(y~ . . . . .  y , . y )  E e~' for some variable y of ~'. 

(3) Let ,l, be a P(F)-condi t ion,  and suppose a~ E I and ~b~(a~:i  E F) .  Let 

q E Q and let y be a variable of  ~. Then there exists a P(F)-condi t ion  ~'  _ el, 

and a" E I such that ~¢'~(a[ : i E F) ,  and - O ( y )  ~ ,~' for some 0 ~ q. 

((2) and (3) need to be applied several times in succession to achieve (iii) and (iv).) 

PROOVS. (1) Let ~'  be the union of ~ over all functions * : 2 r ~ 2 R such that 

7" -~ 7. One verifies immediately that ~'  is a P(2~)-condition. We need only to 

check that there exist distinct elements a, (71 E 2 ") satisfying the x-formulas in ~'. 

Let ~ be the conjunction of  the x-formulas in ~, and let a~ ~ I be distinct elements 

such that ~o(a~ : 7 E 2rl ). Find a sufficiently large finite A so that if tpzx(a~/M) = 

t p ~ ( a , / M )  and then a~'s are independent then ~¢(a~: 7 E 2 ~ ). By the density as- 

sumption (preceding (*)), we can choose distinct a~ (~ ~ T )  such that t p ~ ( a J M )  = 

tp~(a, lR /M)  for each r. This clearly meets the requirement. 

(2) and (3) are very similar; let us prove (3). Let A be a large finite set of  for- 
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mulas, so that if tpa(a[/M) = tpa(ai /M) and a[ E I then ~cbX(a[ : i E F) .  By the 

hypothesis, replacing the ai's by other elements if necessary, there exists a stable 

system (M(s )  : s E P([1 . . . . .  n})) with ai E M([ i ] ) ,  aid, M(  (~) I (M(  O n M) ,  the 

parameters  in • are in M ( O ) ,  M ( ~ )  ,1, M I ( M ( ~ )  n M);  and M ( [ l , . . . , n ] )  

omits each type in Q. Use Lemma 2.2 to find bs, m E M(s )  such that ~ ( a i  : i E F,, 

bs, m :s c_ F) .  Find 0 such that ~-O(b ) ,  where b is the bs, m or ai corresponding to 

y. (Note that 0 is over 9 . )  By Lemma 2.3(b) there exists a P([ 1 . . . . .  n })-condition 

• ' D • U [ - 0  } such that ~b'X(ai : i E F).  By the remark following 2.3, 4 '  may be 

chosen with parameters in M ( Q )  n M. This finishes the proof.  

DEFINITION. a is next-to-definable from B in a model M (a E n d f ( B ; M ) )  if 

there exists a formula  ~o(g) E L ( B )  such that M ~ (3g)¢(g) ,  and for all ( E  M, 

if M ~ ~o(6) then a is definable f rom ~. 

Proposit ion 3.1 is immediate f rom 

LEMMA 3.5. (a) For each n < o~ there exists a model M o f  a superstable theory 

with ca rd (M)  = Rn, such that: 

( *n) for  any s c_ M with card(s)  = n + 1, there is a E s such that a is next-to- 

definable over s - [ a }. 

Moreover, there exists a countable set o f  partial types Q omitted by M, such that 

every model omitting each type in Q has the same property. 

(b) No structure o f  cardinality ~,n+J has ( *n). 

PROOF. (b) Let card(M) = ~n. As in the proof  of  Lemma 3.4(b) one can find 

elementary submodels Ni of  M (i = 1 , . . . ,  n) (with card ( N  i) = Rn-,) and elements 

ai such that a~ E Nj iff i ,  j .  But if a is next-to-definable from/3 in M, then every 

elementary submodel of  M containing/~ must also contain a. Thus s = { at . . . . .  an I 

demonstrates the failure of  (*n- t ) .  

To prove (a), note first that for each set X of  cardinality at most Rn there ex- 

ists f :  o~ x IX]  n + X, such that for any s E [X] n+~, for some x E s and some 

k E o~, x = f ( k , s  - Ix}). For n = 0 this is clear. Assume it is true below n. Define 

f : w  x [o~n] n ---, oJn as follows. For each o~ < o~n, c a rd ( a )  < Rn; so one can find 

f~ : o~ x [o~] n-~ --, ct such that for each s E [or] n, for some x E s and k < ~0, x = 

f ( s  - [xl ) .  Given s E [~%]", let o~ be the greatest element of  s, and let f ( k , s )  = 

f~ (k ,s  - [o~ ]). It is easy to see by induction that this works. Of  course, the model 

( X , f ( k , )  : k < oJ) is not stable. But starting with the trivial structure on o~n (pure 

equality), and applying the following claim o~ times, one gets a stable structure with 

the required property.  

CLAIM. Let M be stable, ca rd (M)  = Rn. Then there exists a stable structure 

M* such that: 
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(a) M = pro* for some predicate P of the language of  M*. 

(b) M* induces no new first-order structure on 3//. (Every M*-0-definable sub- 

set of  M is M-0-definable.) 

(c) For some formula ~(x~ . . . . .  xn,y) of M, for any s E [M] ~+l, for some 

enumeration a,a~ . . . . .  an of  s, M* ~ (3y)~(a~ . . . . .  an,y), and if M* 

~(al  . . . . .  an,b) then a is definable from b in M*. 

(d) The cardinality of  M* is Rn. 

NOTE. There exists a partial type q (in (n + 1) ! + n + 1 variables), omitted 

by M*,  such that if (N*,N)  is elementarily equivalent to (M*,M)  and omits 

q then (c) holds in (N*,N).  (The type has variables x 0 , . . .  ,xn and Ye (e a permu- 

tation of  0 . . . . .  n); it says that for each e, either - (3y)~(Xe~)  . . . . .  Xe~n),Y), or 

¢P(Xe(l)  . . . . .  Xe(n),Ye) and Xe(o) is not definable over Ye.) 

PROOF OF CLAIM. Let f :  ¢o × [M] n __, M be the function constructed above. 

For s E [M] n, let Gs be a set of  functions on ¢0 into M, such that: 

(i) Gs is dense: for each k < w and f0 : k ~ M, for some g E Gs, fo = g l k. 

(ii) For each g E Gs and k < o~, for some m < ¢o, g(m)  = f ( k , s ) .  

(iii) card(G~) = Rn. 

(Let G~ be the set of  all g satisfying (ii); note that it is dense, and take a dense 

subset Gs of  cardinality bln.) 

Let E = [ ( s ,g ) : s  E [M] n, g E Q] ,  7r(s,g) = s, 7rm(S,g ) = g(m).  Then the 

structure M* consisting of  M U E with the structure of  M, together with the re- 

lation m E r(s ,g)  and the functions a'm, meets the requirements. It is stable as ev- 

ery restriction to a finite language is interpretable in M. 

4. Omitting types in superstable theories 

The core of this section is Theorem 4.1 and Proposition 4.3.4.1 gives a syntac- 

tical criterion for the existence of models of  a superstable theory, of  prescribed di- 

mension, omitting a given type (or set of types). The cardinal enters the syntactical 

picture only through its set of  combinatorial identities; Theorem 1.5 is an imme- 

diate corollary. 4.3 shows a converse, that it is indeed necessary to consider all the 

combinatorial identities; this is needed for Theorem 1.4 (b --, a), as well as for The- 

orem 1.1. Theorems 4.2 and Proposition 4.4 are generalizations of  4.1 and 4.3 to 

the many-cardinal context; for example, 4.4 shows that there are no theorems of  

the form (K~ : ~ </~) --, ~ (for superstable omitting types) other than those that 

follow formally from 1.4. We conclude by deducing 1.1, 1.4, and 1.6. 

DEFINITION. Le t /0  = (FI . . . . .  Fn) be a sequence of  disjoint finite sets, F = 

I,.JiF/, and let pi (1 < i < n) be stationary types, S c P(F) .  For v E F, let i(v) 
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be the i such that v E F~. An S-condition • with x-variables x~ (v E F)  is called 

#-compatible if each ~o(x~: v E F)  is in the nonforking extension of  (~eFPit~) (x~) 

to the set of  parameters; i.e. if /3 is the set of  parameters of  ~, a~ ~ Pi~) and 

{a~ : v E FI  IJ {3} is independent, then ~ ( a ~  : v E F) .  

Id(Xl . . . . .  Xn;F) is the set of  combinatorial identities of  (),l . . . .  ,)~n) on the 

set F I U . . . U  Fn, so divided. Note that if card(F/)  > hi for some i, then 

Id(~,l . . . . .  )~;/~) = O. P ( F )  is the set of all subsets of  U i E  

THEOREM 4.1. Let T be countable and superstable, Q a countable set o f  incom- 

plete types, p a type over a countable model M. Then the following are equivalent: 

(a) T has a model N ~_ M, dimp(N) > ~,, such that N omits each q E Q. 

(b) For each I ~ Id() , ,F) ,  each q E Q, every I-symmetric, p-compatible P ( F ) -  

condition ~, and each variable y o f  ¢b, there exists an I-symmetric, p-compatible 

P(F)-condi t ion  ,b" ~_ ¢b and 0 E q with ¢b' i- - O ( y ) .  

THEOREM 4.2. Let T, Q be as in 4.1, E a countable set o f  stationary types, and 

X(p )  an uncountable cardinal for  p E E. Then (a),(b) are equivalent: 

(a) T has a model omitting each q E Q and realizing ~ p×tP) "Z.Y p E  E 

(b) For each m, each m-tuple Pl . . . . .  Pm f rom E, each I E Id()x;F),  each 

q E Q, each 1-symmetric, (p~ . . . . .  pm)-compatible P(F)-condi t ion ,b, and each 

variable y o f  ~b, there exists a stronger such condition ~' with ,b' t- - O ( y )  for  

some 0 E q. 

PROOF OF THEOREMS 4.1 and 4.2. (a) = (b). Let N be a model omitting each 

q E Q and containing a realization I of  (~)p~ep x~p). Let M be a countable na- 

submodel of N. { a E I :  M~, a ] is countable; we can discard it (using ~ (p)  > R1 ), 

so that M,L L Skolemize N partially as follows. Let L* be a richer language con- 

taining many terms. Let S be the set of finite subsets of I, and use 2.8 to get a 

1-system (M (s )  : s E S) contained in N. Interpret the terms of L* in N in such a 

way that every L*-submodel of N is an L-elementary submodel, and the L* -hull 

of  s E S is M ( s ) .  Let Pt . . . . .  Pm be stationary types not in E, I E Id(~, (p l )  . . . . .  

~ (Pm);P) ,  q E Q, and let • be an/-symmetr ic ,  (Pl . . . . .  pm)-compatible POe) _ 

condi t ion,  P = (F1 . . . . .  Fm), F~ . . . . .  Fm disjoint, F = F~ U . . .  U Fro. Let a~.~ 

(i = 1 . . . . .  m, o~ < h(pi))  be distinct elements o f / ,  with a~,, ~ Pi. By the defini- 

tion of  a combinatorial identity, one can find among them aj ( j  E F)  such that 

aj ~Pk i f j  E Fk, and if ((Jl . . . . .  Ji),(J~ . . . . .  j[)) E / t h e n  tpc*(aj~ . . . . .  a j M )  = 

tp~. (aj~ . . . . .  a j ; /M).  To prove the existence of  ~ ' ,  we may identify F with the 

subset of I indexed by it, i.e. identify j with aj. So (M(s )  : s ~_ F)  is an/-symmet-  

ric 1-system, and the hypothesis of  2.4 holds. (The isomorphisms h(s, t) :M(s )  

M ( t )  are defined as follows. Let s = [a~ . . . . .  ai]. Then there is a unique enumer- 
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ation (bl . . . . .  bi) of  t such that ( ( a l , . . .  , a i ) , (b l  . . . . .  bi)) E I; and a unique L °- 

atomic map M ( s )  --+ M ( t )  with ai '--" bi, namely r ( a )  ,-. r(/~) ( r  a term of  L*). 

The choice of  the enumeration at . . . . .  a~ of  s is irrelevant.) By 2.4, there exists e 

such that e (x:) = a (a E F) ,  and ( (M(s )  :s c_ F) ,  O, e) is an/-symmetric S-system. 

Now M ( F )  omits q, so for some 0 E q, ~ - O ( e ( y ) ) .  By Proposition 2.5 there ex- 

ists an / -symmetr ic  P(F) -condi t ion  4,' stronger than 4,, such that +' I- - 0 ,  and 

(M,+ ' ,e ' )  is a P(F)-system for some e' D_ e. Since e'(xo) ~Pi<:~ (where a ~ F,.~:~), 

• ' is ~)~,~pit~)-compatible. 

(b) = (a). We deal only with 4.1; this simplifies the notation considerably with- 

out really sacrificing any of  the ideas. 

PROOF OF 4.1. For each combinatorial identity I ~ Id(X), find a countable 

structure on k demonstrating the fact that it is not an identity of  k. Combining 

all these structures, and the ordering on X, we get a countable structure on X such 

that if s E [k] n, then the equivalence relation I ( s )  = {(~,/~) E s < n : t p ( ~ )  = 

tp(/~)] is a combinatorial identity of  X. Let Ex,e2 . . . .  be all the formulas of  the 

language of  this structure, A( j )  = {el . . . . .  t~j}, and f o r / ~  < . . .  < 13i < ~, let 

F( i , j ) ( l 131 , . . . , t 3 i } )  = tpa<jl(/3). So for each s E S = IX] <+, for some j ,  the 

equivalence relation induced on the set of  increasing sequences from s by F ( i , j )  

(i ___ j )  agrees with l ( s ) .  In this situation call s j-resolved, and let S J = {s E S : s  

is j-resolved. } So S = U j<+ S j. 

We need to find the elementary diagram of  a model realizing pX and omitting 

q. The variables will be xi (i < X) and Ys, n (s E S, n < ~o). At stage j < o~, for each 

s E S j, we will have a P(s) -condi t ion  +s'J in the variables xi (i E s) and Yt,n 

(t  c_ s, n < <9). The complete diagram will be (the set of consequences of) the union 

over j < w and s E S j of  cI ,s'j. We will ensure: 

(a) +*'J is p-compatible. 

(b) l f s ,  t E S j, card(s) = card( t )  = i, and F ( i , j ) ( s )  = F ( i , j ) ( t ) ,  then +~'-/and 

+t,j differ only by an order-preserving change of variables. If s c_ t then +:'J = 

¢"J(s) .  

(c) If s E S j and j '  > j then ~b s'j" F- ~b s'j. 

(d) For each q E Q and n < o~, for arbitrarily large j < co, for all s E S j, for 

some 0 E q, -0(y~,~) E • ~'~. 

(e) For each ~(u~ . . . .  ,u~,z)  E L,  for arbitrarily largej  < co, for all s E S j and 

each n-tuple ( wt . . . . .  w,) of variables of  the form xi (i E s) or Yt, k (t __. S, k < j ) ,  

either 0 s,j I- - (3z) ¢ ( w~ . . . . .  w~, z) or for some k', e~*,J ~- ~,( wj . . . . .  wn, y,,k,).  

Clearly it suffices to achieve (a)-(e). Again we show only how to preserve (a) and 

(b) while meeting (c) and also (d) for q, n or (e) for ~, where q, n or ~ are handed 

to us by a bookkeeper. Suppose we have 0 ~,j for s E S ~, and (a),(b) hold. For 
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s E S i+l ,  let xI,~ = U[tbJ, t : t  E S j, t c_ s}. Then  it is easy to check that  xI,~ is a 

P ( s ) - cond i t i on ,  that  (a),(b) hold for  '/10 with j + 1, and ff'~ 1- ~j, t  for  t c_ s. To  

take  care o f  (d) for  q, n, let C~ = [ F ( i , j  + 1 ) ( s ) : s  E SJ+I l, C = Ui  Ci, and enu- 

me ra t e  C as 1cl . . . . .  c ( r ) ] .  Find 'I '1, ' t '2 . . . . .  ~I'c~r) induct ively,  sat isfying the 

s ame  condi t ions  as xI,0, with xI,~+ I 1- xI,~ (s  E S i÷1) and  such tha t  for  all s, if  

F ( i , j  + 1)(s)  = ck, then for  some 0 E q, -O(ys, n) E ~ .  To do this, assume we 

have 9k,  and  let c = Ck+l, C E Ci. Let x ° . . . . .  x i-1 and yS.m (S C_ {0 . . . . .  i -- I I ,  

m < ~) be new variables (for t e m p o r a r y  use). We have a P ( i ) - c o n d i t i o n  c 9  on 

these variables:  cxI, is i somorphic  to ~ for  any s E S ~+l with F ( i , j  + 1)(s) = c, 

by  the order-preserving change o f  variables.  Similarly define ~F(u)  = d (for u c_ 

10 . . . . .  i - 1 }) i ff  for  (any) s E S s+l with F ( i , j  + 1)(s)  = c, the order  preserving 

bijection 10 . . . . .  i - 1 } --, s carries u to a set t with F( i , j  + 1) (t)  = d. c9 exists by 

(b), is p - c o m p a t i b l e  by (a), and i s / - s y m m e t r i c  by (b) again.  By hypothesis ,  there 

exists a n / - s y m m e t r i c ,  p - c o m p a t i b l e  P ( i ) - c o n d i t i o n  ~xI,' 1- ~ ,  and 0 E q, with 

- O ( y )  E ~o', where y = yl0 ... . .  i-11. Let csJ+l = [s E Si+l : ca rd(s )  = i '  < i, and 

for  some u c_ 10 . . . . .  i - 1 }, F ( i ; j  + 1 ) (s) = CF(u)]. For s E ~S j+l , F ( i ; j  + 1 ) (s) = 

~F(u) ,  let ~I ' ' s  be the P (  i )-condit ion obta ined f rom cxI,'(u) by the order-preserving 

change o f  variables u ~ s. This definition is consistent (the choice of  u does not mat -  

ter); moreover ,  "S j+~ is closed downwards ,  and (a),(b) hold on ~9'~ where it is de- 

fined. This allows us to define, for  s E S j+~, xI, '~ = U [ ~ " ( t )  : t c_ u, t E ¢S J+~ }; (a) 

and (b) cont inue to hold.  Let xI,~+l = xI,~. U 9 '~.  It is now easy to check that  ,I,~+~ is 

a P(s ) -condi t ion ,  and (a),(b) hold. Letting ~ , j + l  = 9 : t r ) ,  we achieve (d). (e) is sim- 

ilar; instead o f  the hypothesis  one needs a l e m m a  to the effect  that  for  a n y p - c o m -  

pat ible ,  / - symmet r i c  P ( F ) - c o n d i t i o n  ~,  any var iables  w~ . . . . .  wn o f  • and any  

( u ~ . . . . .  un, z) E L, there exists a s t ronger  p - compa t ib l e , / - symmet r i c  P (F)  -con- 

dition ~ '  and a variable w' of  if '  such that  ~ '  1- - ( ]z )  ~ ( ~, z) or ~ '  ~- ~ ( ~, w' ). This 

is easy to prove  directly, or it can be deduced f rom 2.4, 2.5, and the obvious  exis- 

tence of  fully symmetr ic  systems meeting the hypothesis  o f  2.4 and with e0 (xi) ~p 

(not necessarily omit t ing any type).  This finishes the const ruct ion,  and the p r o o f  

o f  4.1. 

PROPOSITION 4.3. There exists a complete, countable, superstable, unidimen- 

sional theory T with the following property. For every combinatorial identity I, 

there exists a partial type q (I) such that T has a model o f  power r omitting q (I) 

i f  and only i f  I is not a combinatorial identity o f  K. 

I f  I is the canonical identity separating "~n from "~+ (given by the ErdOs-Rado 

theorem) then q( I )  is a complete type. 

T is a many-sorted theory with sorts So, SI . . . . .  However, for any particular I, 
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q( I )  mentions only finitely many sorts, so there exists a single-sorted theory 

(depending on I) with the same property. 

PROOF. Let (V,+,  V1, V2 . . . .  ) be an Abelian group of  exponent 2 with a 

strictly descending chain of  subgroups of  finite index. For k < o~, let V tk) be the 

set of  linearly independent subsets of  V of  power k. For s E V I*), let V~ = V x 

[s l ,  S, = UlV~:s  ~ v(k)}, ~,  = I(v,(w,s)) ~ v x  S k : v ~ s } ,  

Rk = [ (v , (v l , s ) , (vz , s ) )  : v, vl ,vz E V, v + vj = v2, s E V(k) l 

(this gives the action of  V on V~ without specifying the zero element of  V~), 

Ek, m = [((VI,S),(Vz,t)) E S2: Vl - -  U 2 ~-: Vm}. Let 

M = (V,+, Vm,Sk, 7rk,Ek, m,Rk : k , m  < 6o). 

M i s  interpretable in (V,+, Vm:m < oJ) (it is so given). So M i s  superstable; by 

virtue of  the 7rk's, it is unidimensional. Let T = T h ( M ) .  

It will be convenient to consider also the theory T '  of  a certain expansion M '  

of  M: for each m, each k < ~ and each coset C of  Vm, adjoin the predicate 

Pk.m.C = [(v,s) E Sk: V E C]. Note that any model of  T expands to a model of  

T'. Hence for any partial type q of  T, T has a model of  power ~, omitting q if and 

only if T '  does. 

Now let I be a combinatorial  identity on n. The partial type q = q(I )  will 

have variables Yi for i E n and Xs for s C n. q will say that {Yo . . . . .  Y,- i  } E V (n), 

xs E Vly,:i~s ~, and XsEk,mXt whenever m < w and (s , t )  E L Let q'(I )  = q( I )  U 

[yi E Vm:i < n, m < w}. It is easy to see that if I is the Erd6s-Rado  identity 

(I  = [(s , t ):card(s)  = card(t)}),  then q'(I )  is complete. 

I f  I _ P(n)2 is a combinatorial identity of  ;~ and M is a model of  T of power ~,, 

we must show M realizes q( I ) ,  and even q'(I )  provided X > 2 ao (as is the case if 

a nontrivial Erdfs -Rado  identity applies to )~). Let J be any basis for V i as a 

vector space over the 2-element field; if k > 2 a°, choose J c_ Am Vm M. Then 

ca rd(J )  = ~,. Expand M t o  a model of  T ' ,  choose any as E Vs for s E [J]<" ,  and 

define c on [J] <n by: 

c(s) = I (m ,C )  :as E Pk, m,c(k = card(s))] .  

As k --, L there exist bl . . . . .  b ,  E J such that c([b~:i E s]) = c([bi: i  E t}) if 

(s , t)  E L Letting G = alb,:iesl, this translates to: (bl . . . . .  bn,G:s C n) realizes q. 

I f  k > 2 ~o, it follows that M realizes q'. 

Now suppose I is not a combinatorial  identity of  ~,. Let C be a large saturated 

model of  T', V =  v C / ( v ° )  c where V ° = ('1,, Vm; and i f M i s  an elementary sub- 
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model of  C, let V(M) = v c / ( v  °c + Vm). Define CM on the set of finite indepen- 

dent subsets of  V m as follows. Given s E [vM] (k), choose a E V M. Find a' E V c 

such that for each m and each coset C of  Vm, a' E C iff a E Pk, m,C. This deter- 

mines a + V °c uniquely. The choice of  a' is determined up to the action of  V ~, 

so a + V °c + V m is determined from s alone. Let CM(S) = a + V °c + V m. Given 

any M0, and any function c on the finite independent subsets of  V m° into V(Mo), 

there exists an elementary submodel M of  C with V m = V M° and cm = c. (Simply 

choose an appropriate as E Ms for each s; let M = V M° U [b E Sk: for some s c_ 

V m° and a E V m°, b E Vs and (a, as, bs) E Rkl.)  

Start with any countable elementary submodel of  C,M~. Let Mo be a model 

with V ~o = V m6 + S, where card(S) = ~, S c_ V oc. Then v M ° / v  ° is countable, 

so V(Mo) has cardinality continuum. Thus there exists c: IV m° ] <~ ~ V(M0) dem- 

onstrating that I is not a combinatorial identity of  )~. Ignore c on non-independent 

subsets of  Vm°; and find M with V M = V M° and cm = c (on independent subsets). 

Then q is omitted in M. 

QUESTION. This shows that the Hanf  number for omitting a single complete 

type for countable, superstable theories is at least "~. By Theorem 1.1, it is at 

most "~++. Which of  the three remaining possibilities holds? (If the answer is 2~, 

a proof  would be interesting.) 

PROPOSITION 4.4. Let (Ke : c~ </~) be an increasing sequence o f  cardinals with 

limit r. 

(a) Suppose Id (re) ~: Id (K) f o r  any a. Then there exists a superstable T and a 

countable set Q o f  partial types such that T has a model  omitting each q E Q in 

each power  re, but not  in r. 

(b) Suppose Id(Ke) *: Id(K+) fo r  any a. Then there exists a superstable T and 

a countable set Q o f  partial types such that T has a model  omitting each q E Q in 

power r, but not in power r +. 

PROOF. Let To be the unidimensional theory of the proposition. 

(a) If/z is uncountable then for some So < #, for all a > o~ o, Id(Ke) = Id(reo); 

so choosing I E  Id(K) -- Id(Keo), we can let T = To, Q = [q ( I ) l .  If # = No, let 

(V,+, vl,  v2 . . . . .  Co,C~,... ) be a countable group of  exponent 2 with a decreas- 

ing chain of  subgroup of  finite index, such that A V~ -- (0), with constants (cn) 

naming each element of  V. For each v E V -  101, let My be a model of  To; the 

Mv's are to be taken pairwise disjoint and disjoint from V, and we will impose no 

further relations on them. Let In E Id(Kn+l) - Id(Kn), q~ = q(In).  If q~ = q~(.P), 

let q,~()7,x) be the partial type asserting that x E V - (0), ~ is from Mx, and )5 
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realizes qn in Mx considered as a model of  To. Let Q consist of  the following par- 

tial types: 

(a) [ xE  Vl O lxg=co, x=gc~, . . .  }; 

(b) [Xl,X 2 ~ V -  (0), X l :g: X2] O q~(. ,v1,xi)U q~(j~2,x2); 

(c) I x E  V -  Vm} U q~,(x,p). 

I f  a model N omits (a), then it has no nonstandard elements of  V; if it omits the 

type (b), then ca rd (M N) < rz for all but one v E vN; and if it also omits the types 

in (c), then card(My) u < r,,,+l, where x ~ V,n. So any model omitting each q E Q 

has cardinality <Km+l for some m. Conversely, it is easy to build a model of  

cardinality rm, for any m. 

(b) This time it is the countable case that is trivial, so assume/z  > R0, and 

choose Oto < #, such that Id(r~)  = Id(r~o) for all o~ > C~o. We may assume C~o = 0, 

and d0 -> #. We will use the following theory.  Let M be a model o f  To. For 

a E V(M),  let M~ be another model of  To, with the Ma's disjoint and disjoint 

f rom M. Let I E Id ( r  +) - Id(Ko). Then there exists a partial type q, such that 

(M,M~: a E M)  omits q if and only if M and each M~ omit I. Clearly this has a 

model of  power r but not r +. 

PROOF OF 1.4, (b) = (a). Let M be a model of  a superstable theory of power 

r, a regular cardinal. I f  r > 2 a° then by 2.8 M contains a Morley sequence of 

power r over some countable submodel,  so 1.5 applies. I f  oJ < K < X _< 2 a° then 

1.2 applies. I f  r = 2 ~° < ~, then r has no nontrivial combinatorial  identities while 

X does have one, so the theorem holds vacuously. 

(a) = (b). The fact that r > ~0 is obvious. From 4.3 it follows that Id(K) = Id(~,). 

In the regular case there is nothing more to prove. If  r is singular, then by 4.4(b) 

there exists r '  < ~ with Id(~ ' )  = Id(K+). But K < r + _< X, so Id(K) = Id(~ +) = 

Id(X). Thus Id(K '+) = Id(X). 

COROLLARY TO 1.4. I f  K is singular of  cofinality #, o~ < # _< 2 a°, and T has 

models o f  arbitrarily large p-dimension below ~ omitting q, then it has a model o f  

p-dimension K omitting q. 

QUESTION. Can we delete the condition on the cofinality? Equivalently, if K is 

singular of  uncountable cofinality, is there always K' < K such that Id(K') = Id(K)? 

PROOF OF 1.1. This is a special case of  1.4, since Id(X) = Id(X') if X,X' are 

above "~, but not if one is above and one below. 

PROOF OF 1.6. Let P be a 0-definable set. A stationary type p is called foreign 

to P if for some (or all) models N, if a realizes the non-forking extension of p to 
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N, then the partial type II = "P(x) and x ~ N "  is not a consequence of  any con- 

sistent formula over N U [ a}. It follows that II is not realized in any 1-atomic 

model over N U [ aJ. It is also easy to check that if M is a countable model, I is 

independent over M, and M '  is 1-atomic over M O / ,  then 

R0 + card(pM) = R0 + card lb E I : t p ( b / M )  is not foreign to p}. 

Also note that if K is a set of  types over M, all foreign to P, and p is a limit point 

of  K in the a-type topology (i.e. for every z~, for some p E K, p and p' have the 

same restriction to a A-type) then p is foreign to K. 

We may assume each K~ > w. Let a* be the least/3 < o~ such that K~ >_ 2 ~°. We 

want to find nonalgebraic stationary types P~,n,m (/3 < a,  n < w) with the follow- 

ing properties. For/3 < a ,  let an (/3) =/3 if/3 is a successor; if/3 is a limit ordinal, 

let an (/3) be an increasing sequence of  ordinals approaching/3. Note that k~ < 2 ~° 

if/3 < a*. We need: 

(a) If  ~ < an(/3) then p~,n,m is foreign to P6; and P~ E p~,n,,~. 

(b) Each P~,n,m is based on a countable model M with M c_n~ N; and 

(~) ,,~n~) is realized in N over M. .8,n, mlJ.8,n,m 

(c) (Density). For each finite a and each/3, n, m, there exist infinitely many m'  

such that Po,n,m and P~,n,m" have the same restriction to a A-type over M. 

Note that if P~,n,,, (m < o~) satisfy the density condition over a model M ' ,  

and M '  _ M, and p0 . . . .  is the nonforking extension of P~,~,m to M, then P~.n,m 
(m < ¢0) satisfy the density condition over M. This remark makes it easy to find 

the required types, by induction on B, using 2.8(a). (To achieve density, choose first 

Po,n,i (i < ~ ) ,  and then refine.) 

Assuming (a),(b),(c) are achieved, we proceed in two steps. Note that by (a) 

(b) of  4.2, 

(*) For each finite sequence (/3 m, n l, m i ) . . . . .  (/3k, n~, mk), letting p i = p~,.,,, m,, 

~ = a~(/3~), for each I E Id(~ ~ . . . . .  kn;P), for each q E Q, each/-symmetr ic ,  

(p l  . . . . .  pn)-compatible P(F)-condi t ion ~, and each variable y of ~, there exists 

a stronger such condition ~'  with ~ E q, -O(y) E or' (some 0). 

Mimicking the proof  of  Theorem 1.2, and noting that there are only countably 

many pB, n,m'S altogether, we find a new collection of types P~,n,m over M satisfy- 

ing (*) but with m ranging over 2 ~ rather than w; and PB.n,m is in the closure 

(/X-type topology) of  IP~.~,m :m < wl. Thus by the initial remark, our new 

collection also satisfies (a). By 4.2 (b) ~ (a), there exists a model N '  realizing 

@ {p~.n,~:i < max(~, ,~) ,2~°) l  while omitting each q E Q. In addition, we can 

demand that M ---n~ N';  this just amounts to adding some partial types (omitted 
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in N)  to Q. Thus we may assume N is 1-atomic over M 13 I, where I is the inde- 

pendent sequence realizing (~) [ Pa, n, i : i < max ( ~an t ~ ,  2a° ) }. By the remark in the 

fourth sentence of  the proof,  this gives the cardinalities we want. 

5. Larger Hanf numbers 

PROPOSITION 5.1. (a) The Hanf  number for small extensions of  a countable 

superstable theory T is " ~ .  

(b) The Hanf  number for omitting an arbitrary set o f  types is "~-,~, even for 

superstable theories. 

(c) The Hanf  number for omitting a countable set of  incomplete types in a sta- 

ble theory is "~ .  

LEMMA 5.2. Let S be a set of  sentences of  L~,,~. 

(a) There exists a countable universal theory T' in a relational language, and a 

set Q' o f  partial atomic types of  T' such that for every cardinal r, T' has a model 

o f  power r omitting each type in Q' i f f  S has a model of  power K. 

(b) There exists a countable superstable T and a set Q of  partial types of  T such 

that for every cardinal r, T has a model o f  power r omitting each type in Q i f f  S 

has a model o f  power r. 

PROOF. (a) First reduce to the question of  omitting a set of  types Q" for some 

first order theory T"; Skolemize it; and make every definable relation atomic. Let 

T'  be the universal part of  the resulting theory, and find Q'  such that if A omits 

Q, then the Skolem-hull of  A omits Q". 

(b) (Sketch) Let V = (2~×~,+, 7ri, j ,2) where + is pointwise addition modulo 2, 

and 7rij(v) = v(i , j ) .  L e t / b e  an infinite set, I N  V =  •. For s E I <~, let As be 

a copy of  V, presented with the action of  V on As by translation as well as copies 

of  the functions 7ri.j, but without the 0 element. Let S~ = U [ A s : s  E In}, 

T = Th(V, L $1, $2 . . . .  ) with the evident structure. 

Call a model N o r  this theory proper if: (a) v E V N and 7rij(v) = 0 for all i , j  

then v = 0; (b) v E V N, then for large enough i, for all j ,  ~rij(v) = 0; and for each 

i, for large enough j ,  7rij(v) = 0; (c) s E I n fq N, a E As, then for each i, either for 

large enough j ,  7ri.j(a) = 0, or for large enough j ,  7ri,j(a) = 1. 

Let T', Q'  be from (a), and let R1,R 2 . . . .  list the atomic formulas of  T' ,  with 

Ri k(i ) -ary.  Given a model N of  T, we attempt to interpret T'  in N as follows: 

the underlying set is to be IN; and Rn(s) holds (for s E I k(n)) iff for every a E As, 

for large enough j ,  7r~,j(a) = 1. We require (d): under this interpretation, one has 

a model of  T ' ,  omitting each atomic type in Q'. It is clear that each of  
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(a),(b),(c),(d) is an omitting-types requirement; and that every infinite model of T' 

can be obtained from a model of T in this way. 

5. l(b) follows immediately from Lemma 5.2. 

PRoof oF 5.1(c). Show by induction on h (a "~): there exists a stable M× of 

cardinality h and a countable set of types Q× omitted by M such that no model of 

cardinality > ~, omits each type in Qx. For ~ = R0 or )~ a limit cardinal of cofinal- 

ity o~, this is easy. If ~, = 2 p, let M = Mp. Let C; (i < p) be a dense set of functions 

o~ ~ M, such that if i ¢ j then Ci t7 Cj = O. (Find the Ci's inductively; as Uj<i Cg 

has cardinality <2 p there is still f :  ~ ~ M with f [  n prescribed and f ~ Uj<i Ci). 
Let h : [•]2 ~ p be a coloring with no homogeneous set of size 3. For i c j  E / ,  let 

S({i,j}) be a copy of Cht~,j). Let Mx = M~ U I' U (U{Sli, j} :i c j  E I), with the 

various "evaluation" functions, and the function s ---, { i,j } if s E S{ i,j 1. The fact 

that the elements of S are "functions" (i.e. no two have the same "value at n" for 

each n) and that there is no homogeneous set of size 3 can now be expressed by 

partial types. By the Erd6s-Rado theorem, these types cannot be omitted in a 

model of power h+. 

REMARK. The Hanf number for omitting types is "~++ for stable theories with 

the property: 

(*) Whenever I is an indiscernible subset of  a model M, there exists a model 

N c M, I c N with N/I  R~-isolated. 

Hence the above gives an example of a stable theory without (*). 

It remains to prove 5. l(a). The coding of Lemma 5.2 cannot be used because it 

yields models realizing many types. An inductive construction of the type of 5. l(c) 

cannot work either, because if M is superstable of regular cardinality K, then it has 

an elementary submodel M '  of power K such that every definable set of M' has 

power K or ~0 (unlike in the stable case, where any model omitting the required 

types contained traces of its construction, by having definable subsets of power # 

for cofinally many # < r).  So we seem to need a direct construction. This seems 

to require a combinatorial characterization of "~ (distinguishing it from "~+) via 

a partition theorem that involves only finite homogeneous sets (so that their non- 

existence can be expressed by omitting types). 

Homogeneity for a tree of colorings 

We will use structured collections c, of colorings, where c, colors r(r/)-sets in 

countably many colors. Note that if r(~7) is bounded then already "~ has infinite 



Vol. 74, 1991 STABILITY AND OMITTING TYPES 317 

homogeneous sets for all the c,'s at once, and if they are not then it takes a cardi- 

nal much larger than " ~  to have simultaneous homogeneous sets for them. We 

use an intermediate notion, where the homogeneous set is homogeneous for only 

finitely many of  the colorings, but their identity is not known in advance. 

The set indexing the colorings will be a countable well-founded tree T, endowed 

with a positive integer-valued function r on T. A (T, r)-coloring of  X is a collec- 

tion c, (7 E T),  c, being an r(7)-coloring on X with countably many colors. If 

7 is not a maximal node in T, it is required that the colors of  c, are immediate 

successors of  7 in T. A subset H of  X is called homogeneous for g if there exists 

a branch b of  T such that for each l _< length(b),  (l _> 1), and each r ( b ( l ) ) -  

element subset s of  H, cbct-~)(s) = b (1). H is called a proper homogeneous set if 

ca rd (H)  > r ( b ( l ) )  for each l (0 --- 1 < length(b)).  If H is a proper homogeneous 

set, then b is clearly determined by H and b(0); in the interesting case, T has a 

unique root, so b is determined by H. 

We define an ordinal rank on tagged trees (T , r )  as follows. Given 7 E T, let 

T~ (T>,) be the subtree consisting of  all elements of T(strictly) above 7- If Thas  

more than one root, let 

rk(T, r )  = sup{rk(T,.r[ T,): 7 a root of 7"1. 

If T h a s  a unique root 7, let rk(T, r )  = rk(T>,.rlT>,) + r ( 7 )  - 1. If  T =  O, 

rk(T,r )  = O. As T is well-founded, this defines a countable ordinal. 

Write (k) = (T) if every T-coloring on k has a proper homogeneous set. 

PROPOSITION 5.3. Let c~ < o~1. 

(a) "~+ ~ (T)  f o r  every tree T o f  rank <<_~. In fac t  every T-coloring has an infi- 

nite homogeneous  set. 

(b) There exists a tree T o f  rank ~ such that "~ ~ (T ) .  

PROOF. (a) Let ? be a T-coloring on an X = "~+. Choose a root 7 of  T. Let 

b = r(~)  - 1, T '  = T>,, "r = r k ( T ' , r l T ' ) .  Then rk(T)  >_ 3' + b. By the Erd6s-  
q_ 

Rado theorem (or if b = 0 by the pidgeon-hole principle), as card(X)  > "~+b, 

there exists a subset Y of  X of  cardinality "~- such that Y is homogeneous for c,.  

Let 7 + = 7 An, where n is the homogeneous color for Y, and let T" = T~_,+. By in- 

duction on the foundation rank of  T, there exists an infinite subset Z of  Y, homo- 

geneous for 71T". It follows that Z is homogeneous for ?. 

(b) Recursively in a ,  we will build a tree T of  rank ix, a tagging r on T, and a 

(T,r)-coloring ? of a set of  size "~ with no proper homogeneous sets. If o~ = 

+ n, 8 a limit ordinal, Twill  have a unique root 7, and r(7)  = n + 1. 
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Ifo~ = 0 we take any singleton tree T = 1~}, r(r/) = 1, and we take the 1-coloring 

on oJ to be the identity. The  case o f  a a limit ordinal is similar.  

I f  a = l~ + 1, with f3 limit. Let ~ ,  be a sequence o f  ordinals  approach ing  ~. 

Each one has its tagged tree (T, ,  r , )  and a corresponding coloring (c~ : r E T,) o f  

Xn with no proper  homogeneous  sets. Wi thout  loss of  generali ty the T~'s are dis- 

joint .  Let  T be the tree with a unique root  ~/, such that  T>, is the union of  the 

T~'s. Define r on T so as to agree with each r ,  on T,, and r(~7) = 2. Note  that  

X =def 1-In X~ has cardinal i ty I-In "~,  = "~  = "~.  Define a (T , r ) -co lor ing  ~ on X 

as follows. Let  c,([x,y])  be the largest integer n such that  x ln  :/:yln. I f  r E T~, 

let c~([xl . . . . .  xr~) ]) = c~({Xl (n)  . . . . .  Xr~) (n)]).  Suppose H is a proper  homoge-  

neous subset for this coloring. Then  c a r d ( X )  >__ 3. Let n be the homogeneous  color 

for  c, .  Then  i f x  :~y  E H ,  then x ( n )  ~ y ( n ) ;  and it is easy to check tha t  I x ( n )  : 

x E H J is a p roper  homogeneous  subset  for  ~". This contradicts  the choice o f  ~". 

The  remaining case is ~ = ~ + n, n > 2. By induct ion,  there exists a tagged tree 

(T ' , r ' )  of  rank  ~ + n - 1 with a unique root  r/ and r '(~/ ')  = n, and a (T' ,r ' ) -  

coloring d on )~ = "~+n-~ with no proper  homogeneous  subset.  Let  X --- x2, and 

order  it lexicographically. Given x , y  E X, let (x ,y)  be the smallest a < X such that  

x ( a )  : / :y(a) .  We define a pre l iminary  3-coloring Co on T: Given x < y < z in X,  

let the color of  [x,y, zl  be the order  type of  ( ( x , y ) , ( x , z ) , ( y , z ) ) )  in ~. As n >__ 2 we 

can consider  Co as an n + 1-coloring, by ignoring all but  the first three elements 

(in the ordering of  X ) .  Given any m-coloring d on k, let d* be the m + 1-coloring 

on X given as follows: if Xo < • • • < xn E X, 

d ' I x 0  . . . . .  xnl = d(l(Xo,Xl), (xl ,x2) . . . . .  (Xn-1 , g n ) } ) .  

Let T b e  the following tagged tree. It has unique root ~7, and r(r/) = n + 1. The  sec- 

ond  level o f  T i s  the set o f  pairs (a,b) ,  where a is a color  of  d , ,  and b is a possi- 

ble order  type o f  n + 1 elements in a well-ordering.  T>_~o.b) is a copy of  T ' a  as a 

tree; the restriction o f  r to T>_ta, b) is obta ined f rom the restriction o f  r '  to T'_>~ by 

adding 1 everywhere.  Def ine  a (T, r ) -color ing  ~ o f  X as follows: Let  c,  be the 

n + 1-coloring combining Co and d~,, i.e. c,(s)  = (Co(S),d~,(s)). I f  r E T>(a.b) cor- 

responds  to r '  E T'_>~, let c, = d,*,. 

Suppose  H i s  a p roper  homogeneous  set for  ~. So H has at least four  elements,  

and  the order  type in h o f  ( (x ,y) ,  (x, z) ,  (y, z)) is fixed for  x < y < z in H.  Con-  

sider (x ,y)  as a funct ion of  x , y  for  x < y ;  I claim that  it depends on at most  one 

o f  its variables.  In other  words,  i f x < y  < z then (x ,y)  = ( x , z ) o r  (x , z )  = (y , z ) .  

Let x < y < z < w be four  elements o f  H.  I f  (x ,y)  < (x ,z)  then (x ,y)  = (y ,z ) .  By 

homogenei ty,  (x ,y)  = (y, w), so (y ,z)  = (y, w) and (x,y)  = (x,z) ,  a contradiction. 

So (x ,y )  >_ (x , z ) .  I f  (x ,y)  = (x , z )  we are done.  I f  (x ,y)  > (x , z )  then (x , z )  = 
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(y,z) ,  so again the claim holds. Say for definiteness the first possibility occurs; so 

( x , y )  = ~(x)  for x < y E H. Let 

H '  = {¢(x) :x  E H, and x is not the greatest element of  H} .  

Then c a r d ( H ' )  = ca rd (H)  - 1, and one can verify that H '  is a proper homo- 

geneous set for d. (Given an n-element subset s' of  H '  for example, let s' = 

[,p(Xo) . . . . .  ~(x~_~)} with Xo < " . .  < xn-1 E H, and choose xn E H with x,_t < 

x~. Then 

c~, (s ' )  = c~, { ¢(Xo) . . . . .  ~(x~_l )1 = c~, l(Xo,Xl ) . . . .  , (xn,xn+l)1 = d({ x0 . . . . .  xn }), 

so it does not depend of the choice of  s'.) This contradiction proves the proposition. 

PROOF OF 5.1(a). We give the construction in detail. Our task is to find, for 

each a < ~0~, a countable superstable M with a small extension N of  power "~,, 

but with no small extension of  power "~+. Call a model small if, for each n, it real- 

izes only finitely many n-types. Then N is small iff  it is a small extension of  some 

countable model. So it suffices to find, for each c~ < c01, a small superstable N~ of 

power "~ such that every model of  T~ = Th(N~) realizes some type (over O) 

omitted in N~. 

Let (I ,r)  be a tagged tree, X a set of  cardinality "~,~, and ~ an (l ,r)-coloring of  

X with no proper homogeneous subsets. The language of  T~ will have a unary 

predicate D, a unary predicate Bi for each i E L a relation symbol./~ for i E / ,  and 

a unary predicate Pm for m < ¢o. The axioms will say that f~ is the graph of  a func- 

tion from Bi onto [D] r(i), the set of  r(i)-element subsets of  D. We will treat f~ as 

a function. For i E l a n d  u E [D] r(i~, let Bi(u)  = Ix E Bg :3~(x) = u l .  D and the 

Bi's will be pairwise disjoint, and Pm O D = ~ for each m. Aside from these re- 

strictions, everything is independent: given i E I and two disjoint finite sets F ,F '  

of  integers, an axiom will say that for all u from [D] k, there exists y E B~(u) such 

that Pk(Y) holds for k E F a n d  fails for k E F'. It is not difficult to check that 

once one specifies the number of predicates Bk,~ for each k, one has a description 

of  a complete superstable theory, of  finite rank. (D is strongly minimal, and Bi 

has infinity-rank r ( i )  + 1 for each i.) 

Given a model N of  T~ and x E N, define fx : oJ -~ 2 by f x ( m )  = 1 if N~ 

Pk, m (X), f x ( m )  = 0 otherwise, fx  will be called the P-type of  x (in N) .  In the con- 

struction of  N~ we will ensure that only countably many P-types are realized as 

the P-types of elements of  N~. It is easy to deduce from this property that for ev- 

ery finite subset C of N~, only countably many types over C are realized in N~; so 

N~ is small. 
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Each N~ will also omit each type of  the form: 

(Yl g:Y2) & Bi(Yl) & Bi(Y2) & (f /(Yl)  =J~(Y2)) & l~m(Pm(Yl )  ~ Pm(Y2)), 

as well as the type: - D ( x )  & / ~ i  - Bi(x) .  In any model omitting these types, 

each element y of  a Bi(u) is determined by its P-type, so Bg(u) has cardinality at 

most continuum. If the model omits every type that the N~'s omit, then it realizes 

only countably many P-types, so in fact each Bi(u) is countable. Thus the cardi- 

nality of each model N we will be concerned with will be equal to the cardinality 

of  D N. So we have only to find N~ such that if N '  is elementarily equivalent to N~, 

and omits every type omitted by N~, then D N' has cardinality at most "~. 

Let J be the set of  colors mentioned in any of the colorings c,. Given j E J, 

choose 3 'o :w ~ 2 in such a way that i f j  :~j '  then [m : s j (m) ~: s;  (m)] is infinite. 

Let 

Pj = [f:o~ ~ 2: for all but finitely many m < ~o,f(m) = sj(m)] .  

So the Fj's are pairwise disjoint. Every P-type of an element of N~ outside D will 

be in some I'j; so N will satisfy the requirement of realizing only countably many 

P-types. N = N~ will be the disjoint union of  D u and B u (i E I) .  Let D N = X. 

For i E I with r( i )  = k, B N is the disjoint union over u E [X] k of  the Bi(u) 's .  

B~(u) is a countable set, with distinguished subsets Pm f) Bi(u); choose these sub- 

sets in such a way that the set of  P-types of  elements in Bi(u) N is precisely 

F(c~(u)). The choice of the Pj's ensures that N i s  indeed a model of  T~. 

Given a branch b of  T (b is necessarily finite, and there are only countably many 

possibilities for b), and given a choice of 3'j E I'j f o r j  = b( i ) ,  some i, we define 

a partial type q = qb.~. Let h = 1 + max( r (b (1 )  : l  < length(b)],  qo has variables 

xi (1 _< i _< h) and Yl.s, where 1 _< 1 _< length(b), and s is a subset of [ 1 . . . .  ,h ] of 

cardinality r( l) .  Let xs denote {xm:m E s]. The partial type asserts that each 

xi E D, and the x~'s are distinct; that Y~,s E Bb(j) (xA; and that the P-color of yl, s 

is 3'bit+l). qb,5 is omitted in N~; if it were realized by (a~ . . . . .  ah . . . .  ), then 

[ai . . . . .  ah] would be a proper homogeneous set for (. 

Conversely, let N '  be elementarily equivalent to N, omitting every type omitted 

in N, and suppose D N' has cardinality > ' ~ .  Given i, and given u E [D']  g, choose 

any y~.~ E B~(u), and let d~(u) be the element j of  J such that the P-color o f y  is 

in I'j. (Every P-color realized in N '  is realized in N, hence is in some I'j.) This 

coloring has some proper homogeneous set [aj . . . .  , t /h}  __. D N ' ;  ~ together with 

the corresponding yi.~'s give a realization of  some qb.q, a contradiction. This fin- 

ishes the proof. 
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